Unraveling the plant growth-promoting potential of Bacillus safensis P1.5S through genome analysis

Authors

  • Mantea Loredana Elena University Alexandru Ioan Cuza of Iasi
  • Amada El-Sabeh
  • Marius Mihasan
  • Marius Stefan

DOI:

https://doi.org/10.47743/jemb-2025-248

Keywords:

draft genome, Bacillus safensis P1.5S, plant growth promoting traits, nitrogen fixation, phytohormone production, biocontrol

Abstract

Plant growth-promoting bacteria have emerged as promising eco-friendly alternatives to traditional agricultural practices. These beneficial microbes promote plant growth through various mechanisms including nitrogen fixation, production of indole-3-acetic acid (IAA), salicylic acid (SA), volatile organic compounds (VOCs), and antimicrobial secondary metabolites. In this study, we performed a genome-based characterization of bacterial strain P1.5S using bioinformatic tools to identify genes associated with plant growth promotion. The draft genome of strain P1.5S is 3,667,318 bp in size, assembled into 13 contigs. Taxonomic analysis confirmed the identity of the strain as Bacillus safensis (dDDH: 80.6%; ANI: 97.84%). Our in silico investigation revealed gene clusters related to nitrogen fixation (10 genes), as well as genes involved in the production of IAA (12 genes), SA (7 genes) and VOCs biosynthesis. Additionally, the genome encodes biosynthetic gene clusters for secondary metabolites with antimicrobial properties such as lipopeptides, peptides and polyketides. The presence of genes related to siderophore and hydrolytic enzymes production highlights the strain’s potential for biocontrol. Moreover, genes associated with root colonization further support the plant-beneficial potential of this strain. Bacillus safensis P1.5S is a promising candidate for agricultural practices, but further greenhouse and field studies are necessary to validate its potential.

References

Akatsuka, H., Kawai, E., Omori, K., Komatsubara, S., Shibatani, T. and Tosa, T. (1994) The lipA gene of Serratia marcescens which encodes an extracellular lipase having no N-terminal signal peptide. J Bacteriol 176, 1949-1956. https://doi.org/doi:10.1128/jb.176.7.1949-1956.1994.

Altimira, F., Godoy, S., Arias-Aravena, M., Araya, B., Montes, C., Castro, J.F., Dardón, E., Montenegro, E., Pineda, W., Viteri, I. and Tapia, E. (2022) Genomic and experimental analysis of the biostimulant and antagonistic properties of phytopathogens of Bacillus safensis and Bacillus siamensis. Microorganisms 10, 670. https://doi.org/10.3390/microorganisms10040670.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.

Andrews, S. (2010) A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Blahut, M., Sanchez, E., Fisher, C.E. and Outten, F.W. (2020) Fe-S cluster biogenesis by the bacterial Suf pathway. Biochim Biophys Acta Mol Cell Res 1867, 118829. https://doi.org/10.1016/j.bbamcr.2020.118829.

Blin, K., Shaw, S., Augustijn, H.E., Reitz, Z.L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B.R., Metcalf, W.W., Helfrich, E.J.N., van Wezel, G.P., Medema, M.H. and Weber, T. (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51, W46-W50. https://doi.org/10.1093/nar/gkad344.

Cámara-Almirón, J., Navarro, Y., Díaz-Martínez, L., Magno-Pérez-Bryan, M.C., Molina-Santiago, C., Pearson, J.R., de Vicente, A., Pérez-García, A. and Romero, D. (2020) Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat Commun 11, 1859. https://doi.org/10.1038/s41467-020-15758-z.

Chakraborty, K., Kizhakkekalam, V.K., Joy, M. and Chakraborty, R.D. (2022) Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Appl Microbiol Biotechnol 106, 329-340. https://doi.org/10.1007/s00253-021-11632-0.

Chen, S., Zhou, Y., Chen, Y. and Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890. https://doi.org/10.1093/bioinformatics/bty560.

Chen, X.H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W.R., Reva, O., Junge, H., Voigt, B., Jungblut, P.R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. and Borriss, R. (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25, 1007-1014. https://doi.org/10.1038/nbt1325.

Coutte, F., Lecouturier, D., Ait Yahia, S., Leclère, V., Béchet, M., Jacques, P. and Dhulster, P. (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87, 499-507. https://doi.org/10.1007/s00253-010-2504-8.

Franz, L., Kazmaier, U., Truman, A.W. and Koehnke, J. (2021) Bottromycins - biosynthesis, synthesis and activity. Nat Prod Rep 38, 1659-1683. https://doi.org/10.1039/D0NP00097C

Gurevich, A., Saveliev, V., Vyahhi, N. and Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072-1075. https://doi.org/10.1093/bioinformatics/btt086.

Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60, 579-598. https://doi.org/10.1007/s13213-010-0117-1.

Hazarika, D.J., Bora, S.S., Naorem, R.S., Sharma, D., Boro, R.C. and Barooah, M. (2023) Genomic insights into Bacillus subtilis MBB3B9 mediated aluminium stress mitigation for enhanced rice growth. Scientific Reports 13, 16467. https://doi.org/10.1038/s41598-023-42804-9.

Hoffmann, T., Mrusek, D., Bedrunka, P., Burchert, F., Mais, C.-N., Kearns, D.B., Altegoer, F., Bremer, E. and Bange, G. (2021) Structural and functional characterization of the bacterial biofilm activator RemA. Nat Commun 12, 5707. https://doi.org/10.1038/s41467-021-26005-4.

Jan, J., Valle, F., Bolivar, F. and Merino, E. (2000) Characterization of the 5' subtilisin (aprE) regulatory region from Bacillus subtilis. FEMS Microbiol Lett 183, 9-14. https://doi.org/10.1111/j.1574-6968.2000.tb08926.x

Kalamara, M., Spacapan, M., Mandic-Mulec, I. and Stanley-Wall, N.R. (2018) Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 110, 863-878. https://doi.org/10.1111/mmi.14127.

Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., Giannoglou, M., Chanioti, S., Kasimatis, C.-N., Kakabouki, I., Leonidakis, D., Danalatos, N., Katsaros, G. and Efthimiadou, A. (2022) Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep 12, 11598. https://doi.org/10.1038/s41598-022-16044-2.

Kumar, M., Poonam, Ahmad, S. and Singh, R.P. (2022) Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 7, 100133. https://doi.org/https://doi.org/10.1016/j.nexus.2022.100133.

Leal, C., Fontaine, F., Aziz, A., Egas, C., Clément, C. and Trotel-Aziz, P. (2021) Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv. Chardonnay) rhizospheric soil: assets for sustainable biocontrol. Environ Microbiome 16, 3. https://doi.org/10.1186/s40793-021-00372-3.

Li, X., Zhang, M., Qi, D., Zhou, D., Qi, C., Li, C., Liu, S., Xiang, D., Zhang, L., Xie, J. and Wang, W. (2021) Biocontrol ability and mechanism of a broad-spectrum antifungal strain Bacillus safensis sp. QN1NO-4 against strawberry anthracnose caused by Colletotrichum fragariae. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.735732.

Liu, Y., Xu, Z., Chen, L., Xun, W., Shu, X., Chen, Y., Sun, X., Wang, Z., Ren, Y., Shen, Q. and Zhang, R. (2023) Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 48. https://doi.org/10.1093/femsre/fuad066.

Lombardía, E., Rovetto, A.J., Arabolaza, A.L. and Grau, R.R. (2006) A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J Bacteriol 188, 4442-4452. https://doi.org/doi:10.1128/jb.00165-06.

Mantea, L.-E., El-Sabeh, A., Mihasan, M. and Stefan, M. (2025) Bacillus safensis P1.5S exhibits phosphorus-solubilizing activity under abiotic stress. Horticulturae 11, 388. https://doi.org/10.3390/horticulturae11040388.

Mateus, J.R., Dal’Rio, I., Jurelevicius, D., da Mota, F.F., Marques, J.M., Ramos, R.T.J., da Costa da Silva, A.L., Gagliardi, P.R. and Seldin, L. (2021) Bacillus velezensis T149-19 and Bacillus safensis T052-76 as potential biocontrol agents against foot rot disease in sweet potato. Agriculture 11, 1046. https://doi.org/10.3390/agriculture11111046.

Meier-Kolthoff, J.P. and Göker, M. (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10, 2182. https://doi.org/10.1038/s41467-019-10210-3.

Müller, J., Schiel, S., Ordal, G.W. and Saxild, H.H. (1997) Functional and genetic characterization of mcpC, which encodes a third methyl-accepting chemotaxis protein in Bacillus subtilis. Microbiology 143, 3231-3240. https://doi.org/https://doi.org/10.1099/00221287-143-10-3231.

Natori, Y., Kano, Y. and Imamoto, F. (1990) Nucleotide sequences and genomic constitution of five tryptophan genes of Lactobacillus casei1. J Biochem 107, 248-255. https://doi.org/10.1093/oxfordjournals.jbchem.a123034.

Omer Bendori, S., Pollak, S., Hizi, D. and Eldar, A. (2015) The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 197, 592-602. https://doi.org/10.1128/jb.02382-14.

Özcengiz, G. and Öğülür, İ. (2015) Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotech 32, 612-619. https://doi.org/https://doi.org/10.1016/j.nbt.2015.01.006.

Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A.N. (2021) Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs eds. Dar, G.H., Bhat, R.A., Mehmood, M.A. and Hakeem, K.R. pp.1-20. Cham: Springer International Publishing.

Palma, L., Bel, Y. and Escriche, B. (2024) Genomic insights into Bacillus thuringiensis V-CO3.3: unveiling its genetic potential against nematodes. Data 9, 97. https://doi.org/10.3390/data9080097.

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. and Tyson, G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043-1055. https://doi.org/10.1101/gr.186072.114.

Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M. and Wendisch, V.F. (2005) The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 115, 221-237. https://doi.org/https://doi.org/10.1016/j.jbiotec.2004.08.017.

Saleem, S.R., Levison, J. and Haroon, Z. (2023) Chapter 12 - Environment: role of precision agriculture technologies. In Precision Agriculture ed. Zaman, Q. pp.211-229: Academic Press.

Shao, J., Li, S., Zhang, N., Cui, X., Zhou, X., Zhang, G., Shen, Q. and Zhang, R. (2015) Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb cell fact 14, 130. https://doi.org/10.1186/s12934-015-0323-4.

Souza, R., Ambrosini, A. and Passaglia, L.M. (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38, 401-419. https://doi.org/10.1590/S1415-475738420150053

Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M. and Ostell, J. (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44, 6614-6624. https://doi.org/10.1093/nar/gkw569.

Timofeeva, A.M., Galyamova, M.R. and Sedykh, S.E. (2023) Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants (Basel) 12. https://doi.org/10.3390/plants12244074.

UniProt: the Universal Protein Knowledgebase in 2025, Nucleic Acids Res. 53 (2025) D609-d617. https://doi.org/10.1093/nar/gkae1010.

Vats, S., Srivastava, P., Saxena, S., Mudgil, B. and Kumar, N. (2021) Effects of nitrogen-fixing bacteria for agriculture of the future. In Soil Nitrogen Ecology eds. Cruz, C., Vishwakarma, K., Choudhary, D.K. and Varma, A. pp.305-325. Cham: Springer International Publishing.

Wick, R.R., Judd, L.M., Gorrie, C.L. and Holt, K.E. (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13, e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

Wolf, D., Rippa, V., Mobarec, J.C., Sauer, P., Adlung, L., Kolb, P. and Bischofs, I.B. (2015) The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Res 44, 2160-2172. https://doi.org/10.1093/nar/gkv1242.

Yeak, K.Y.C., Perko, M., Staring, G., Fernandez-Ciruelos, B.M., Wells, J.M., Abee, T. and Wells-Bennik, M.H.J. (2022) Lichenysin production by Bacillus licheniformis food isolates and toxicity to human cells. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.831033.

Zhang, Y., Qi, J., Wang, Y., Wen, J., Zhao, X. and Qi, G. (2022) Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiol Res 254, 126920. https://doi.org/https://doi.org/10.1016/j.micres.2021.126920.

Published

2025-10-23

How to Cite

Loredana Elena, M., El-Sabeh, A., Mihasan, M., & Stefan, M. (2025). Unraveling the plant growth-promoting potential of Bacillus safensis P1.5S through genome analysis. Journal of Experimental and Molecular Biology. https://doi.org/10.47743/jemb-2025-248

Issue

Section

Articles

Categories