INVESTIGATING THE IN VIVO EFFECTS OF COPPER COORDINATION COMPOUNDS WITH THIOSEMICARBAZONES ON ERYTHROCYTE REDOX BALANCE

Authors

  • Valeriana Pantea Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Ecaterina Pavlovschi Nicolae Testemitanu State University of Medicine and Pharmacy
  • Veronica Sardari Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Svetlana Protopop Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Vasile Macari Technical University of Moldova image/svg+xml
  • Ala Ambros Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Sergiu Curlat Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Tatiana Timercan Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml
  • Olga Tagadiuc Nicolae Testemițanu State University of Medicine and Pharmacy image/svg+xml

DOI:

https://doi.org/10.47743/jemb-2025-236

Keywords:

thiol-disulfide metabolism, erythrocytes, copper coordination compounds with thiosemicarbazones

Abstract

Thiol-disulfide homeostasis plays a vital role in cellular and systemic functions, regulating biosynthetic reactions, growth, transport, repair, and redox signaling through the dynamic interplay between thiol (-SH) and disulfide (-S-S-) states. This study evaluated the effects of copper coordination compounds with thiosemicarbazones (CCTs) on thiol-disulfide metabolism in 120 rats (Rattus norvegicus Albicans). The animals were divided into 10 groups by sex, with the control group receiving saline and experimental groups (Groups 2–10) administered specific CCTs (10 µg/kg, subcutaneously) for 30 days. CCTs, known for their medicinal potential, particularly as anticancer agents, enhanced antioxidant defenses by increasing total and reduced glutathione (tGSH, rGSH) and decreasing oxidized glutathione (GSSG). These findings underscore the potential of CCTs in modulating redox balance and their promise in therapeutic applications, including cancer treatment.

References

Arthur JR. 2000. The glutathione peroxidases. Cell Mol Life Sci. 57(13-14):1825-35. doi: 10.1007/pl00000664

Brülisauer L, Gauthier MA, Leroux JC. 2014. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release. 195:147-54. doi: 10.1016/j.jconrel.2014.06.012

Byrnes RW, Mohan M, Antholine WE, Xu RX, Petering DH. 1990. Oxidative stress induced by a copper-thiosemicarbazone complex. Biochemistry. 29(30):7046-53. doi: 10.1021/bi00482a014

Chen W, Zhao Y, Seefeldt T, Guan X. 2008. Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal. 48(5):1375-80. doi: 10.1016/j.jpba.2008.08.033

D'Autréaux B, Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8(10):813-24. doi: 10.1038/nrm2256

Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. 2009. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 34(2):85-96. doi: 10.1016/j.tibs.2008.11.002

Ellgaard L, Sevier CS, Bulleid NJ. 2018. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci. 43(1):32-43. doi: 10.1016/j.tibs.2017.10.006

Fernández-Checa JC, Kaplowitz N, García-Ruiz C, Colell A, Miranda M, Marí M, Ardite E, Morales A. 1997. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Physiol. 273 (1 Pt 1):G7-17. doi: 10.1152/ajpgi.1997.273.1.G7

Forman HJ, Zhang H, Rinna A. 2009. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 30(1-2):1-12. doi: 10.1016/j.mam.2008.08.006

Garcia-Ruiz C, Fernandez-Checa JC. 2006. Mitochondrial glutathione: hepatocellular survival-death switch. J Gastroenterol Hepatol. Suppl 3:S3-6. doi: 10.1111/j.1440-1746.2006.04570.x

Gulea A, Poirier D, Roy J, Stavila V, Bulimestru I, Tapcov, V., Birca, M., and Popovschi, L. 2008. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: chemical synthesis and structure - activity relationships. J Enzyme Inhib Med Chem. 23(6):806-18. doi: 10.1080/14756360701743002

Halliwell B, Gutteridge JM. 1984. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet. 1(8391):1396-7. doi: 10.1016/s0140-6736(84)91886-5

Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL. 2011. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med. 50(1):110-21. doi: 10.1016/j.freeradbiomed.2010.10.696

Jin Y, Yu C, Denman RJ, Zhang W. 2013. Recent advances in dynamic covalent chemistry. Chem Soc Rev. 42(16):6634-54. doi: 10.1039/c3cs60044k

Jones DP. 2002. Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol. 348:93-112. doi: 10.1016/s0076-6879(02)48630-2

Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG. 2004. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J. 18(11):1246-8. doi: 10.1096/fj.03-0971fje

Jones DP, Jr. Mody VC, Carlson JL, Lynn MJ, Jr. Sternberg P. 2002. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med. 33(9):1290-300. doi: 10.1016/s0891-5849(02)01040-7

Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP. 1999. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med. 27(11-12):1208-18. doi: 10.1016/s0891-5849(99)00145-8

Kosower NS, Kosower EM. 1978. The glutathione status of cells. Int Rev Cytol. 54:109-60. doi: 10.1016/s0074-7696(08)60166-7

Leichner C, Jelkmann M, Bernkop-Schnürch A. 2019. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev. 151-152:191-221. doi: 10.1016/j.addr.2019.04.007

Liu RM, Gaston Pravia KA. 2010. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 48(1):1-15. doi: 10.1016/j.freeradbiomed.2009.09.026

Lu SC. 1999. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 13(10):1169-83.

Lu SC. 2009. Regulation of glutathione synthesis. Mol Aspects Med. 30(1-2):42-59. doi: 10.1016/j.mam.2008.05.005

Meister A, Anderson ME. 1983. Glutathione. Annu Rev Biochem. 52:711-60. doi: 10.1146/annurev.bi.52.070183.003431

Meister A. 1988. Glutathione metabolism and its selective modification. J Biol Chem. 263(33):17205-8.

Meister A. 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 51(2):155-94. doi: 10.1016/0163-7258(91)90076-x

Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones D. 2002. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol. 283(6):G1352-9. doi: 10.1152/ajpgi.00183.2002

Pantea V, Popa V, Tagadiuc O, Andronache L, Gudumac V. 2022. Changes of oxidative stress indices and antioxidant system in the liver tissue on the administration of some coordination compound of copper, derivatives of thiosemicarbazide. Revista de Ştiinţe ale Sănătăţii din Moldova. 3(29):7-12. doi: 10.52645/MJHS.2022.3.02

Pantea V, Andronache L, Globa P, Pavlovschi E, Gulya A, Tagadiuc O, Gudumac V. 2023. Copper coordination compounds with thiosemicarbazones: in vitro assessment of their potential in inhibiting glioma viability and proliferation. Archives of the Balkan Medical Union. 58:234-244. doi: 10.31688/ABMU.2023.58.3.02

Pantea V. 2023. The metabolic effects of native bioactive compounds with antitumor activity. https://anacec.md/files/Pantea_teza.pdf

Rinaldi R, Eliasson E, Swedmark S, Morgenstern R. 2002. Reactive intermediates and the dynamics of glutathione transferases. Drug Metab Dispos. 30(10):1053-8. doi: 10.1124/dmd.30.10.1053

Sánchez-Rodríguez MA, Mendoza-Núñez VM. 2019. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid Med Cell Longev. 2019:4128152. doi: 10.1155/2019/4128152

Wada K, Fujibayashi Y, Yokoyama A. 1994. Copper(II)[2,3-butanedionebis(N4-methylthiosemicarbazone)], a stable superoxide dismutase-like copper complex with high membrane penetrability. Arch Biochem Biophys. 310(1):1-5. doi: 10.1006/abbi.1994.1132

Watson WH, Chen Y, Jones DP. 2003. Redox state of glutathione and thioredoxin in differentiation and apoptosis. Biofactors. 17(1-4):307-14. doi: 10.1002/biof.5520170130

Yang Y, Karakhanova S, Werner J, Bazhin AV. 2013. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem. 20(30):3677-92. doi: 10.2174/0929867311320999165

Yi MC, Khosla C. 2016. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annu Rev Chem Biomol Eng. 7:197-222. doi: 10.1146/annurev-chembioeng-080615-033553

Published

2025-04-23 — Updated on 2025-07-22

How to Cite

Pantea, V., Pavlovschi, E., Sardari, V., Protopop, S., Macari, V., Ambros, A., Curlat, S., Timercan, T., & Tagadiuc, O. (2025). INVESTIGATING THE IN VIVO EFFECTS OF COPPER COORDINATION COMPOUNDS WITH THIOSEMICARBAZONES ON ERYTHROCYTE REDOX BALANCE. Journal of Experimental and Molecular Biology, 26(2), 125–135. https://doi.org/10.47743/jemb-2025-236