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Abstract

Sox9 is a transcription factor of high mobility group (HMG) box family DNA binding domain.
It plays a crucial role in gonadogenesis during embryonic developmental period. 1454 bp of
sox9 mRNA transcript of Hypoatherina tsurugae (D. S. Jordan & Starks) was cloned and
sequenced. It consists of an open reading frame (ORF) of 1436 bp, that encodes a 479 aa protein,
found to be identical to the HMG box of other fish species. A phylogenetic tree was constructed
by comparing the mRNA sequence of 50 different fishes across various taxa available in the
NCBI database and using as outgroup Acipenser sinensis. The tree shows a high homology of
sox9 from H. tsurugae with that from Maelanotaenia boesemani, the two forming a single
clade. The expression of sox9 was studied in amhy+ (male) individuals. It begins from baseline
at 0 wah (week after hatching) and is expressed in an increasing fashion. In amhy- (female)
individuals it is highly expressed at initial stage (0 wah) and the expression reaches its peak at
2 wah then declines, indicating the low expression needed for differentiation of the female sex
organs. The histological sections of gonads were studied in different stages of biweekly
collected larvae during the sex determination/differentiation period and it showed that
differentiation of gonads male/female is decided at 6 wah. In this stage the primary oocytes are
clearly recognized and it correlates with the expression of sox9 genes. These finding add to the
knowledge for a better understanding of molecular mechanisms of sex determination and
differentiation period in fishes.
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Introduction

It has been reported that the amhy gene (Y chromosome-linked anti-Miillerian hormone) has a
critical role in male sex determination of an old world Silverside, Hypoatherina tsurugae (D.
S. Jordan & Starks) (Bej et al. 2017). Many other genes/transcription factors have also been
described as master sex determining genes in various fishes (Matsuda et al. 2002, Myosho et
al. 2012, Yano et al. 2012, Hattori et al. 2013, Takehana et al. 2014). From these references, it
is clear that the genetic machinery of fishes which control gonadal development is very diverse
and is not limited to a particular gene/transcription factor as most interestingly reported for the
sdY, an immune related gene that can crosstalk as sex determining gene in Salmonidae (Yano
etal. 2012).

Sox (Sry related high mobility group box) are a gene family of transcription factors that possess
an important role in reproduction and development of gonads (Hu et al. 2021). Sox9 is a member
of Sox-family that serves a crucial role in testis formation besides other function like cartilage
formation (Healy et al. 1999, Jakubiczka et al. 2010). This is a potential candidate gene in fish
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that may drive downstream development of gonads after being triggered by master sex
determining gene during gonadal differentiation period. Sekido and Lovell-Badge (2008)
believed this gene is to be the main effector of s7y gene to regulate the downstream pathway.
Studies show that the mutation in sox9 gene results in abnormal bone formation and even sex
reversal (Jakubiczka et al. 2010, Georg et al. 2010).

Hypoatherina tsurugae, commonly called cobaltcap silverside, has very little information about
its reproductive biology and sex differentiation. In this species besides the amhy gene (Bej et
al. 2017), the expression of other genes has not been studied during the gonadal
determination/differentiation period. So, the objective of this paper is to study the expression
pattern of sox9 gene in this species and its role during the gonadal development period.

Materials and Methods

About 100 matured wild cobaltcap silversides were collected using a hand net and were
subsequently reared in a 500 liter tank to obtain gametes and offsprings for experiments. The
tanks were supplied with filtered natural sea water at a rate of 100 ml/min. Larvae were fed
rotifers Branchionus rotundiformis and Artemia nauplii from the first day to satiation twice
daily and gradually weaned into powdered marine fish food (AQUEON, Franklin, WI).
Genomic DNA was isolated from caudal fin tissue following a protocol described by Aljanabi
and Martinez (1997). The genotyping of larvae to know their sex (male / female) were
performed using primers Amh 613 F and Amh 35 R (Bej et al. 2017).

Cloning of sox9 gene

For cloning, total RNA was isolated from amhy+ individuals testis using TRIzol (Thermo
Fisher Scientific, Waltham, MA) following the manufacturer’s instruction. 1 pg of total RNA
per sample was reverse transcribed using SuperScript III (Thermo Fisher Scientific) with Oligo-
(dT) primers (Merk Millipore, Darmstadt, German) in 20 pl reactions. The PCR was performed
according to the following conditions: 3 min at 94°C, 30 cycles of 30 sec at 94°C, 45 sec at 60°C
and 2.5 min at 72°C, then followed by a final elongation for 5 min at 72°C. PCR products were
electrophoresed in 1% agarose gel, purified, and sequenced in an ABI PRISM 3100 capillary
sequencer (Life Technologies, Carlsbad, CA) using the BigDye Terminator method. Sequences
were analyzed with GENETY X version 11.0 (GENETYX, Tokyo, Japan). All primers are listed
in Table 1.

Table 1. List of Primers used in cloning and gqRT-PCR (designed for this study)

SILNo Name of Primers Sequences
1 Sox1 F 5’-TTCGCATGAATCTCCTCGACC-3’
2 Sox last R 5’-TCCTCAGGGCCTGGACACAG -3’
3 sox RT 809 F 5’-GGTGAGCTGAGCA GCGAGGT-3’
4 sox RT 935 R 5’-TGCAGGTTGAAGGAGCCGTA-3’
5 S-actinFw17 5’- GCCTGAAACCGGTTCCCTT-3’
6 p-actinRv1838 5-TTTTCGGAACACATGTGCACT-3’
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7 p-actin RT F 5’-GTGCTGTCTTCCCCTCCATC-3’

8 p-actin RT R 5’-TCTTGCTCTGGGCTTCATCA-3’

Real-Time/Quantitative PCR (qQRT-PCR)

For expression studies, total RNA was isolated from amhy+ and amhy- individuals every two
weeks after hatch (wah), namely 0 wah, 2 wah, 4 wah, 6 wah, 8 wah and 10 wah. The expression
level of mRNA transcripts was analyzed by qRT-PCR using specific RT primers designed for
sox9 locus using conditions from a previous study (Bej et al. 2017). The B-actin gene was taken
as an endogenous control because of its stability during sex determination/differentiation
period, using the primers from (Chapman et al. 2015) (Table 1).

Sequence analysis

The multiple alignment software Clustal W was used for the alignment of nucleotide sequences
and their deduced amino acid sequences. The phylogenetic tree was constructed using MEGAX
with Maximum Likelihood, the initial tree inferred with the Neighbour-Joining and the BioNJ
algorithms, and the Tamura-Nei model. The model was determined also using MEGAX. The
Confidence in the tree topology was assessed with 1,000 bootstrap replicates.

Statistical analysis

In gqRT-PCR expression studies, per each time point five to seven samples were taken. The
differences in gene expression between groups were analyzed by ANOVA followed by a Tukey
test using GraphPad prism (v.6.0; GraphPad software, San Diego, CA). Differences in gene
expression were considered as statistically significant at p < 0.05.

Histological analysis of gonadal sex differentiation

Trunk samples were dehydrated through an ascending ethanol series (70%, 90%, 99%, and
100%), cleared in xylene, embedded in Paraplast Plus (McCormick Scientific, St. Louis, MO),
sectioned serially with a thickness of 5 pm, and stained with hematoxylin and eosin. Stages of
gonadal sex differentiation were determined by light microscopy using histological criteria for
another atheriniform, the pejerrey Odontesthes bonariensis (Ito et al. 2005).

Data Accessibility

DNA sequences: GenBank accessions; Hypoatherina tsurugae sox9 [PP108745],
Acanthochromis polyacanthus sox9 [XM _022211835.2], Amphiprion ocellaris sox9
[XM_023286694.3], Anabas testudineus sox9 [XM_026358727.1], Anarrhichthys ocellatus
sox9 [XM 031867589.1], Anoplopoma fimbria sox9 [XM_054606768.1], Astatotilapia
calliptera sox9 [ XM _026164918.1], Chelmon rostratus sox9 [XM_041957848.1], Cololabis
saira sox9 [XM_061712632.1], Cottoperca gobio sox9 [ XM _029437533.1], Dicentrarchus
labrax sox9 [XM 051389381.1], Epinephelus fuscoguttatus sox9 [XM 049561363.1],
Etheostoma  cragini  sox9  [XM_034894690.1],  Etheostoma  spectabile  sox9
[XM_032544694.1], Haplochromis burtoni sox9 [XM 005936187.2], Hippoglossus
hippoglossus sox9 [ XM _034593479.1], Kryptolebias marmoratus sox9 [ XM_017425448.3],
Larimichthys crocea sox9 [MH996432.1], Lates -calcarifer sox9 [KR492508.1],
Mastacembelus armatus sox9 [XM_026325302.2], Maylandia zebra sox9 [ XM_004559402.2],
Melanotaenia  boesemani sox9 [XM _041970542.1], Micropterus salmoides sox9
[XM 038701099.1], Morone saxatilis sox9 [XM_035655588.1], Nematolebias whitei sox9
[XM_037689002.1], Neolamprologus brichardi sox9 [XM_006791412.2], Odontesthes
bonariensis sox9 [AY319415.4], Oncorhynchus mykiss sox9 [AB006448.1], Oreochromis
niloticus sox9 [XM_003450119.4], Oryzias latipes sox9 [NM _001105086.1], Oryzias
melastigma sox9 [XM 024272555.2], Paralichthys olivaceus sox9 [KY924902.1], Perca
Sfluviatilis sox9 [XM_039825773.1], Plectropomus leopardus sox9 [XM 042504339.1],
Poecilia formosa sox9 [ XM _007556363.2], Pseudoliparis swirei sox9 [XM 056407289.1],
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Pundamilia nyererei sox9 [ XM_005744343.1], Sander lucioperca sox 9 [XM_031312361.2],
Scatophagus argus sox9 [XM_046415919.1], Seriola dumerili sox9 [XM 022752333.1],
Simochromis  diagramma  sox9  [XM_040049522.1],  Siniperca  chuatsi  sox9
[XM 044181768.1], Solea senegalensis sox9 [XM 044024558.1], Stegastes partitus sox9
[XM_008303357.1], Thunnus albacares sox9 [XM _044332285.1], Thunnus maccoyii sox9
[XM 042393607.1], Toxotes jaculatrix sox9 [XM 041062045.1], Trematomus bernacchii
sox9 [XM_034143142.1], Xiphias gladius sox9 [XM_040123617.1] and Acipenser sinensis
sox9 [KJ526295.1]

Results

Sequence analysis of sox9

The isolated sox9 cDNA was 1454 bp with an open reading frame (ORF) of 1436 bp, encoding
a 479 aa protein (GenBank Accession number — PP108745) (Figure 1). It shows a close
similarity at nucleotide level to the HMG box of sox9 gene of Melanotaenia boesemani
(96.42%), Stegastes partitus (92.43%), Odontesthes bonariensis (92.42%), Xiphias gladius
(91.01%), Seriola dumerili (90.98%), Lates calcarifer (90.52%), Dicentrarchus labrax
(90.51%) and Oreochromis niloticus (89.40%). By using the Clustal W software, the 479 amino
acid sequence of H. tsurugae was aligned with nine other fish species. The results showed that
the homology was high: Melanotaenia boesemani (98.54%), Odontesthes bonariensis
(96.66%), Lates calcarifer (96.86%), Xiphias gladius (96.25%), Dicentrarchus labrax
(95.82%), Plectropomus leopardus (95.41%), Perca flavescens (95.2%) and Oreochromis
niloticus (92.99%) (Figure 2).
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Figure 1. sox9 gene of Hypoatherina tsurugae with complete CDS
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Figure 2. Deduced amino acids sequence of H. tsurugae sox9 gene aligned with other ortholog

sequences

A phylogenetic tree was constructed by comparing the mRNA sequence of 50 different fish
species across various taxa available in the NCBI database and taking Acipenser sinensis as
outgroup (Figure 3). The tree shows a high homology of H. tsurugae sox9 with Maelanotaenia
boesemani sox9, the two being sister taxa as they both belong to the order Atheriniformes.
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Figure 3. Phylogenetic tree retrieved with the sox9 mRNA sequence of 50 different fish species
along with H. tsurugae
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Gene expression analysis

The result of qRT-PCR illustrated that in amhy- (female) individuals the expression was quite
high at 2 wah then sharply decreases whereas in amhy+ (male) individuals it begins from
baseline at 0 wah and gradually increases in an exponential fashion until complete
differentiation of gonads occur (Figure 4).
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s0x9 in amhy+ sample sox9in amhy- sample
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> a 3 a
K] T 0.020-
o
& > a
i 0.010+ a 5 3 00151 3
= W 3 2 2
0.010-
a L
? 2 0.005-
[»] o
7] (7]
. 0.000- T
A R A
Week after hatch Week after hatch
©) sox9 gene
0.025-
£ = amhy+
el
g 0.020- =i amhy-
=
2 0.0154
| .
®
c 0.0104
=
T 0.0054
]
wn
0.000-1— T T T T T
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week after hatch

Figure 4. Quantitative mRNA expression of sox9 gene (a) in amhy+ individual (male) (b)
amhy- individual (female) (c¢) Both in amhy+ and amhy- plotted in same graph. Values represent
the mean & SEM of 5-7 fish per time point

The histological sections of gonads in different larval stages showed that differentiation of
gonads male/female is decided at 6 wah. In this stage the primary oocytes are clearly recognized
(Figure 5) which is also correlated with expression of sox9 gene.
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Figure 5. Histological differentiation of gonad amhy+ (male) and amhy- (female) analyzed
every two weeks after hatch

Discussions

In the present study, the sox9 gene of H. tsurugae has been successfully cloned and sequenced.
The sox9 mRNA is 1454 bp encoding a 479 aa protein. The sox9 gene has very close similarity
with sox9 gene of Melanotaenia boesemani, Stegastes partitus, Odontesthes bonariensis,
Xiphias gladius, Seriola dumerili, Lates calcarifer, Dicentrarchus labrax, and Oreochromis
niloticus. The number of sox9 subtypes is not the same in different species (Luo et al. 2010).
There is only one type of sox9 gene found in higher vertebrates but usually two subtypes are
found in teleosts, likely due to genome duplication (Meyer et al. 2005, Hu et al. 2021). It is
presumed that there may be two types of sox9 genes in H. tsurugae but only one type was
cloned in this study. The phylogenetic analysis revealed that our sequence forms a clade with
another Atheriniformes, Maelanotaenia boesemani.

In this study, focus is given to the expression pattern of the sox9 gene in gonads of H. tsurugae.
From the qRT-PCR result, the expression of the sox9 gene is correlated with the expression of
the amhy gene that significantly reached a peak at 6 wah, then decreases (Bej et al. 2017). The
expression of amhy was detected from before the appearance of first signs of histological
differentiation in presumptive Sertoli cells surrounding germ cells in the undifferentiated
gonads. Similarly, the expression of sox9 in amhy+ (male) begins from baseline at 0 wah and
is expressed in an increasing fashion needed for the male developmental pathway for testis
differentiation. In amhy- (female) individuals though highly expressed in the initial stage (0
wah) and the expression reaches a peak at 2 wah it declines afterwards which indicates the low
expression needed for differentiation of female gonads, the ovary. It has been reported in the
expression profile of the Zebra fish that the sox9 gene reaches a peak at 18 days post hatch
which is significantly different from male sex individuals and after 18 days after hatch it decline
abruptly (Jorgensen et al. 2008). The expression of sox9a and sox9b was also studied in medaka
fish and it is expressed in testis and ovary during the developmental period of gonads (Kliiver
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et al. 2005). However, the study of the expression of sox9 gene in the medaka fish gave
inconsistent results (Yokoi et al. 2002, Nakamoto et al. 2005). In the rice field eel, Monopterus
albus, the sox9 gene is also expressed in both testis and ovary during the developmental period
(Zhou et al. 2003). The sox9 gene is over expressed in testicles as compared to the ovary in
Acipeneser sturio and Acipenser fulvescens (Berbejillo et al. 2012, Burcea et al. 2018). It has
been reported that sox9 is involved in many signaling pathways during sex
determination/differentiation period and in gonad development of embryo and adult.

Conclusions

From the above study, it may be concluded that expression of sox9 is essential for development
and differentiation of male sex organ testis and it is assumed that after the trigger of sex
determining gene amhy switches on, the next cascade is performed by sox9 gene and other sex
related genes to differentiate the gonad during sex differentiation period for H. tsurugae.
However, more functional experiments are necessary to understand the mechanisms of
downstream pathways of gene regulation during gonadal differentiation period of this species.
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